NIPA Defines an SCF-Type Mammalian E3 Ligase that Regulates Mitotic Entry

نویسندگان

  • Florian Bassermann
  • Christine von Klitzing
  • Silvia Münch
  • Ren-Yuan Bai
  • Hiroyuki Kawaguchi
  • Stephan W. Morris
  • Christian Peschel
  • Justus Duyster
چکیده

The regulated oscillation of protein expression is an essential mechanism of cell cycle control. The SCF class of E3 ubiquitin ligases is involved in this process by targeting cell cycle regulatory proteins for degradation by the proteasome, with the F-box subunit of the SCF specifically recruiting a given substrate to the SCF core. Here we identify NIPA (nuclear interaction partner of ALK) as a human F-box-containing protein that defines an SCF-type E3 ligase (SCF(NIPA)) controlling mitotic entry. Assembly of this SCF complex is regulated by cell-cycle-dependent phosphorylation of NIPA, which restricts substrate ubiquitination activity to interphase. We show nuclear cyclin B1 to be a substrate of SCF(NIPA). Inactivation of NIPA by RNAi results in nuclear accumulation of cyclin B1 in interphase, activation of cyclin B1-Cdk1 kinase activity, and premature mitotic entry. Thus, SCF(NIPA)-based ubiquitination may regulate S-phase completion and mitotic entry in the mammalian cell cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tome-1, a Trigger of Mitotic Entry, Is Degraded during G1 via the APC

Entry into mitosis requires the activation of cdk1/cyclin B, while mitotic exit is achieved when the same kinase activity decreases, as cyclin B is degraded. Cyclin B proteolysis is mediated by the anaphase promoting complex, or APC, an E3 ligase that is active at anaphase in mitosis through G1. We have identified a G1 substrate of the APC that we have termed Tome-1, for trigger of mitotic entr...

متن کامل

Identification of SCF ubiquitin ligase substrates by global protein stability profiling.

Ubiquitin-mediated proteolysis regulates all aspects of cellular function, and defects in this process are associated with human diseases. The limited number of identified ubiquitin ligase-substrate pairs is a major bottleneck in the ubiquitin field. We established and applied genetic technologies that combine global protein stability (GPS) profiling and genetic perturbation of E3 activity to s...

متن کامل

Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase

The target of rapamycin (TOR) plays a central role in eukaryotic cell growth control1. With prevalent hyperactivation of the mammalian TOR (mTOR) pathway in human cancers2, strategies to enhance TOR pathway inhibition are needed. We used a yeast-based screen to identify small-molecule enhancers of rapamycin (SMERs) and discovered an inhibitor (SMER3) of the Skp1-Cullin-F-box (SCF)Met30 ubiquiti...

متن کامل

APC/CCdh1-Mediated Degradation of the F-Box Protein NIPA Is Regulated by Its Association with Skp1

NIPA (Nuclear Interaction Partner of Alk kinase) is an F-box like protein that targets nuclear Cyclin B1 for degradation. Integrity and therefore activity of the SCF(NIPA) E3 ligase is regulated by cell-cycle-dependent phosphorylation of NIPA, restricting substrate ubiquitination to interphase. Here we show that phosphorylated NIPA is degraded in late mitosis in an APC/C(Cdh1)-dependent manner....

متن کامل

Regulation of Postsynaptic RapGAP SPAR by Polo-like Kinase 2 and the SCFβ-TRCP Ubiquitin Ligase in Hippocampal Neurons*S⃞

The ubiquitin-proteasome pathway (UPP) regulates synaptic function, but little is known about specific UPP targets and mechanisms in mammalian synapses. We report here that the SCF(beta-TRCP) complex, a multisubunit E3 ubiquitin ligase, targets the postsynaptic spine-associated Rap GTPase activating protein (SPAR) for degradation in neurons. SPAR degradation by SCF(beta-TRCP) depended on the ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2005